• Product
    • Use cases
    • Solutions
    • Benchmarks
    • Demos
    • Pricing
  • Resources
    • Documentation
    • Case Studies
    • Articles
    • Blog
    • Roadmap
    • Changelog
  • Community
    •   Github
    •   Discord
    •   Twitter
    •   Newsletter
    •   Contact us
  • Cloud GitHub
Getting Started
What is Qdrant?
  • Vector Search Basics
  • Qdrant vs. Alternatives
Quickstart
Interfaces
API Reference
Qdrant Cloud
  • Quickstart
  • Create a cluster
  • Authentication
  • Backups
  • Capacity and sizing
  • Cluster scaling
  • AWS Marketplace
User Manual
Concepts
  • Collections
  • Payload
  • Points
  • Search
  • Explore
  • Filtering
  • Optimizer
  • Storage
  • Indexing
  • Snapshots
Guides
  • Administration
  • Installation
  • Optimize Resources
  • Multitenancy
  • Distributed Deployment
  • Quantization
  • Telemetry
  • Monitoring
  • Configuration
  • Security
  • Troubleshooting
Tutorials
  • Semantic Search 101
  • Neural Search Service
  • Neural Search with Fastembed
  • Bulk Upload Vectors
  • Asynchronous API
  • Create Snapshot
  • Aleph Alpha Search
  • Inference with Mighty
Integrations
  • LangChain
  • LlamaIndex
  • DocArray
  • Haystack
  • txtai
  • Cheshire Cat
  • FiftyOne
  • Cohere
  • Jina Embeddings
  • OpenAI
  • Aleph Alpha
  • Airbyte
  • MindsDB
  • Autogen
  • DLT
  • Apache Spark
  • Stanford DSPy
  • PrivateGPT
  • ML6 Fondant
Examples
Support
FAQ
  • Fundamentals
  • Database Optimization
Community links
Release notes

Docs version: v1.6.x
Integration InstructionsExamples
AlephAlphaMultimodal Search
CohereAdaptive Q&A Engine
DocArray
FiftyOne
Haystack
LangChain
LlamaIndexAdaptive Q&A Engine
OpenAI
txtai

Product

  • Use cases
  • Solutions
  • Benchmarks
  • Demos
  • Pricing

Community

  •   Github
  •   Discord
  •   Twitter
  •   Newsletter
  •   Contact us

Company

  • Jobs
  • Privacy Policy
  • Terms
  • Impressum
  • Credits

Latest Publications

Qdrant 1.6 brings recommendations strategies and more flexibility to the Recommendation API.

Why vector search requires to be a dedicated service.

FastEmbed: Quantized Embedding models for fast CPU Generation

© 2023 Qdrant. All Rights Reserved
Thanks for using Qdrant!

Subscribe to our e-mail newsletter if you want to be updated on new features and news regarding Qdrant.

Like what we are doing? Consider giving us a ⭐ on Github.