Payload
One of the significant features of Qdrant is the ability to store additional information along with vectors.
This information is called payload
in Qdrant terminology.
Qdrant allows you to store any information that can be represented using JSON.
Here is an example of a typical payload:
{
"name": "jacket",
"colors": ["red", "blue"],
"count": 10,
"price": 11.99,
"locations": [
{
"lon": 52.5200,
"lat": 13.4050
}
],
"reviews": [
{
"user": "alice",
"score": 4
},
{
"user": "bob",
"score": 5
}
]
}
Payload types
In addition to storing payloads, Qdrant also allows you search based on certain kinds of values. This feature is implemented as additional filters during the search and will enable you to incorporate custom logic on top of semantic similarity.
During the filtering, Qdrant will check the conditions over those values that match the type of the filtering condition. If the stored value type does not fit the filtering condition - it will be considered not satisfied.
For example, you will get an empty output if you apply the range condition on the string data.
However, arrays (multiple values of the same type) are treated a little bit different. When we apply a filter to an array, it will succeed if at least one of the values inside the array meets the condition.
The filtering process is discussed in detail in the section Filtering.
Let’s look at the data types that Qdrant supports for searching:
Integer
integer
- 64-bit integer in the range from -9223372036854775808
to 9223372036854775807
.
Example of single and multiple integer
values:
{
"count": 10,
"sizes": [35, 36, 38]
}
Float
float
- 64-bit floating point number.
Example of single and multiple float
values:
{
"price": 11.99,
"ratings": [9.1, 9.2, 9.4]
}
Bool
Bool - binary value. Equals to true
or false
.
Example of single and multiple bool
values:
{
"is_delivered": true,
"responses": [false, false, true, false]
}
Keyword
keyword
- string value.
Example of single and multiple keyword
values:
{
"name": "Alice",
"friends": [
"bob",
"eva",
"jack"
]
}
Geo
geo
is used to represent geographical coordinates.
Example of single and multiple geo
values:
{
"location": {
"lon": 52.5200,
"lat": 13.4050
},
"cities": [
{
"lon": 51.5072,
"lat": 0.1276
},
{
"lon": 40.7128,
"lat": 74.0060
}
]
}
Coordinate should be described as an object containing two fields: lon
- for longitude, and lat
- for latitude.
Datetime
Available as of v1.8.0
datetime
- date and time in RFC 3339 format.
See the following examples of single and multiple datetime
values:
{
"created_at": "2023-02-08T10:49:00Z",
"updated_at": [
"2023-02-08T13:52:00Z",
"2023-02-21T21:23:00Z"
]
}
The following formats are supported:
"2023-02-08T10:49:00Z"
(RFC 3339, UTC)"2023-02-08T11:49:00+01:00"
(RFC 3339, with timezone)"2023-02-08T10:49:00"
(without timezone, UTC is assumed)"2023-02-08T10:49"
(without timezone and seconds)"2023-02-08"
(only date, midnight is assumed)
Notes about the format:
T
can be replaced with a space.- The
T
andZ
symbols are case-insensitive. - UTC is always assumed when the timezone is not specified.
- Timezone can have the following formats:
±HH:MM
,±HHMM
,±HH
, orZ
. - Seconds can have up to 6 decimals, so the finest granularity for
datetime
is microseconds.
UUID
Available as of v1.11.0
In addition to the basic keyword
type, Qdrant supports uuid
type for storing UUID values.
Functionally, it works the same as keyword
, internally stores parsed UUID values.
{
"uuid": "550e8400-e29b-41d4-a716-446655440000",
"uuids": [
"550e8400-e29b-41d4-a716-446655440000",
"550e8400-e29b-41d4-a716-446655440001"
]
}
String representation of UUID (e.g. 550e8400-e29b-41d4-a716-446655440000
) occupies 36 bytes.
But when numeric representation is used, it is only 128 bits (16 bytes).
Usage of uuid
index type is recommended in payload-heavy collections to save RAM and improve search performance.
Create point with payload
REST API (Schema)
PUT /collections/{collection_name}/points
{
"points": [
{
"id": 1,
"vector": [0.05, 0.61, 0.76, 0.74],
"payload": {"city": "Berlin", "price": 1.99}
},
{
"id": 2,
"vector": [0.19, 0.81, 0.75, 0.11],
"payload": {"city": ["Berlin", "London"], "price": 1.99}
},
{
"id": 3,
"vector": [0.36, 0.55, 0.47, 0.94],
"payload": {"city": ["Berlin", "Moscow"], "price": [1.99, 2.99]}
}
]
}
from qdrant_client import QdrantClient, models
client = QdrantClient(url="http://localhost:6333")
client.upsert(
collection_name="{collection_name}",
points=[
models.PointStruct(
id=1,
vector=[0.05, 0.61, 0.76, 0.74],
payload={
"city": "Berlin",
"price": 1.99,
},
),
models.PointStruct(
id=2,
vector=[0.19, 0.81, 0.75, 0.11],
payload={
"city": ["Berlin", "London"],
"price": 1.99,
},
),
models.PointStruct(
id=3,
vector=[0.36, 0.55, 0.47, 0.94],
payload={
"city": ["Berlin", "Moscow"],
"price": [1.99, 2.99],
},
),
],
)
import { QdrantClient } from "@qdrant/js-client-rest";
const client = new QdrantClient({ host: "localhost", port: 6333 });
client.upsert("{collection_name}", {
points: [
{
id: 1,
vector: [0.05, 0.61, 0.76, 0.74],
payload: {
city: "Berlin",
price: 1.99,
},
},
{
id: 2,
vector: [0.19, 0.81, 0.75, 0.11],
payload: {
city: ["Berlin", "London"],
price: 1.99,
},
},
{
id: 3,
vector: [0.36, 0.55, 0.47, 0.94],
payload: {
city: ["Berlin", "Moscow"],
price: [1.99, 2.99],
},
},
],
});
use qdrant_client::qdrant::{PointStruct, UpsertPointsBuilder};
use qdrant_client::{Payload, Qdrant, QdrantError};
use serde_json::json;
let client = Qdrant::from_url("http://localhost:6334").build()?;
let points = vec![
PointStruct::new(
1,
vec![0.05, 0.61, 0.76, 0.74],
Payload::try_from(json!({"city": "Berlin", "price": 1.99})).unwrap(),
),
PointStruct::new(
2,
vec![0.19, 0.81, 0.75, 0.11],
Payload::try_from(json!({"city": ["Berlin", "London"]})).unwrap(),
),
PointStruct::new(
3,
vec![0.36, 0.55, 0.47, 0.94],
Payload::try_from(json!({"city": ["Berlin", "Moscow"], "price": [1.99, 2.99]}))
.unwrap(),
),
];
client
.upsert_points(UpsertPointsBuilder::new("{collection_name}", points).wait(true))
.await?;
import java.util.List;
import java.util.Map;
import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.ValueFactory.value;
import static io.qdrant.client.VectorsFactory.vectors;
import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Points.PointStruct;
QdrantClient client =
new QdrantClient(QdrantGrpcClient.newBuilder("localhost", 6334, false).build());
client
.upsertAsync(
"{collection_name}",
List.of(
PointStruct.newBuilder()
.setId(id(1))
.setVectors(vectors(0.05f, 0.61f, 0.76f, 0.74f))
.putAllPayload(Map.of("city", value("Berlin"), "price", value(1.99)))
.build(),
PointStruct.newBuilder()
.setId(id(2))
.setVectors(vectors(0.19f, 0.81f, 0.75f, 0.11f))
.putAllPayload(
Map.of("city", list(List.of(value("Berlin"), value("London")))))
.build(),
PointStruct.newBuilder()
.setId(id(3))
.setVectors(vectors(0.36f, 0.55f, 0.47f, 0.94f))
.putAllPayload(
Map.of(
"city",
list(List.of(value("Berlin"), value("London"))),
"price",
list(List.of(value(1.99), value(2.99)))))
.build()))
.get();
using Qdrant.Client;
using Qdrant.Client.Grpc;
var client = new QdrantClient("localhost", 6334);
await client.UpsertAsync(
collectionName: "{collection_name}",
points: new List<PointStruct>
{
new PointStruct
{
Id = 1,
Vectors = new[] { 0.05f, 0.61f, 0.76f, 0.74f },
Payload = { ["city"] = "Berlin", ["price"] = 1.99 }
},
new PointStruct
{
Id = 2,
Vectors = new[] { 0.19f, 0.81f, 0.75f, 0.11f },
Payload = { ["city"] = new[] { "Berlin", "London" } }
},
new PointStruct
{
Id = 3,
Vectors = new[] { 0.36f, 0.55f, 0.47f, 0.94f },
Payload =
{
["city"] = new[] { "Berlin", "Moscow" },
["price"] = new Value
{
ListValue = new ListValue { Values = { new Value[] { 1.99, 2.99 } } }
}
}
}
}
);
import (
"context"
"github.com/qdrant/go-client/qdrant"
)
client, err := qdrant.NewClient(&qdrant.Config{
Host: "localhost",
Port: 6334,
})
client.Upsert(context.Background(), &qdrant.UpsertPoints{
CollectionName: "{collection_name}",
Points: []*qdrant.PointStruct{
{
Id: qdrant.NewIDNum(1),
Vectors: qdrant.NewVectors(0.05, 0.61, 0.76, 0.74),
Payload: qdrant.NewValueMap(map[string]any{
"city": "Berlin", "price": 1.99}),
},
{
Id: qdrant.NewIDNum(2),
Vectors: qdrant.NewVectors(0.19, 0.81, 0.75, 0.11),
Payload: qdrant.NewValueMap(map[string]any{
"city": []any{"Berlin", "London"}}),
},
{
Id: qdrant.NewIDNum(3),
Vectors: qdrant.NewVectors(0.36, 0.55, 0.47, 0.94),
Payload: qdrant.NewValueMap(map[string]any{
"city": []any{"Berlin", "London"},
"price": []any{1.99, 2.99}}),
},
},
})
Update payload
Set payload
Set only the given payload values on a point.
REST API (Schema):
POST /collections/{collection_name}/points/payload
{
"payload": {
"property1": "string",
"property2": "string"
},
"points": [
0, 3, 100
]
}
client.set_payload(
collection_name="{collection_name}",
payload={
"property1": "string",
"property2": "string",
},
points=[0, 3, 10],
)
client.setPayload("{collection_name}", {
payload: {
property1: "string",
property2: "string",
},
points: [0, 3, 10],
});
use qdrant_client::qdrant::{
PointsIdsList, SetPayloadPointsBuilder,
};
use qdrant_client::Payload,;
use serde_json::json;
client
.set_payload(
SetPayloadPointsBuilder::new(
"{collection_name}",
Payload::try_from(json!({
"property1": "string",
"property2": "string",
}))
.unwrap(),
)
.points_selector(PointsIdsList {
ids: vec![0.into(), 3.into(), 10.into()],
})
.wait(true),
)
.await?;
import java.util.List;
import java.util.Map;
import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.ValueFactory.value;
client
.setPayloadAsync(
"{collection_name}",
Map.of("property1", value("string"), "property2", value("string")),
List.of(id(0), id(3), id(10)),
true,
null,
null)
.get();
using Qdrant.Client;
using Qdrant.Client.Grpc;
var client = new QdrantClient("localhost", 6334);
await client.SetPayloadAsync(
collectionName: "{collection_name}",
payload: new Dictionary<string, Value> { { "property1", "string" }, { "property2", "string" } },
ids: new ulong[] { 0, 3, 10 }
);
import (
"context"
"github.com/qdrant/go-client/qdrant"
)
client, err := qdrant.NewClient(&qdrant.Config{
Host: "localhost",
Port: 6334,
})
client.SetPayload(context.Background(), &qdrant.SetPayloadPoints{
CollectionName: "{collection_name}",
Payload: qdrant.NewValueMap(
map[string]any{"property1": "string", "property2": "string"}),
PointsSelector: qdrant.NewPointsSelector(
qdrant.NewIDNum(0),
qdrant.NewIDNum(3)),
})
You don’t need to know the ids of the points you want to modify. The alternative is to use filters.
POST /collections/{collection_name}/points/payload
{
"payload": {
"property1": "string",
"property2": "string"
},
"filter": {
"must": [
{
"key": "color",
"match": {
"value": "red"
}
}
]
}
}
client.set_payload(
collection_name="{collection_name}",
payload={
"property1": "string",
"property2": "string",
},
points=models.Filter(
must=[
models.FieldCondition(
key="color",
match=models.MatchValue(value="red"),
),
],
),
)
client.setPayload("{collection_name}", {
payload: {
property1: "string",
property2: "string",
},
filter: {
must: [
{
key: "color",
match: {
value: "red",
},
},
],
},
});
use qdrant_client::qdrant::{Condition, Filter, SetPayloadPointsBuilder};
use qdrant_client::Payload;
use serde_json::json;
client
.set_payload(
SetPayloadPointsBuilder::new(
"{collection_name}",
Payload::try_from(json!({
"property1": "string",
"property2": "string",
}))
.unwrap(),
)
.points_selector(Filter::must([Condition::matches(
"color",
"red".to_string(),
)]))
.wait(true),
)
.await?;
import java.util.Map;
import static io.qdrant.client.ConditionFactory.matchKeyword;
import static io.qdrant.client.ValueFactory.value;
client
.setPayloadAsync(
"{collection_name}",
Map.of("property1", value("string"), "property2", value("string")),
Filter.newBuilder().addMust(matchKeyword("color", "red")).build(),
true,
null,
null)
.get();
using Qdrant.Client;
using Qdrant.Client.Grpc;
using static Qdrant.Client.Grpc.Conditions;
var client = new QdrantClient("localhost", 6334);
await client.SetPayloadAsync(
collectionName: "{collection_name}",
payload: new Dictionary<string, Value> { { "property1", "string" }, { "property2", "string" } },
filter: MatchKeyword("color", "red")
);
import (
"context"
"github.com/qdrant/go-client/qdrant"
)
client, err := qdrant.NewClient(&qdrant.Config{
Host: "localhost",
Port: 6334,
})
client.SetPayload(context.Background(), &qdrant.SetPayloadPoints{
CollectionName: "{collection_name}",
Payload: qdrant.NewValueMap(
map[string]any{"property1": "string", "property2": "string"}),
PointsSelector: qdrant.NewPointsSelectorFilter(&qdrant.Filter{
Must: []*qdrant.Condition{
qdrant.NewMatch("color", "red"),
},
}),
})
Available as of v1.8.0
It is possible to modify only a specific key of the payload by using the key
parameter.
For instance, given the following payload JSON object on a point:
{
"property1": {
"nested_property": "foo",
},
"property2": {
"nested_property": "bar",
}
}
You can modify the nested_property
of property1
with the following request:
POST /collections/{collection_name}/points/payload
{
"payload": {
"nested_property": "qux",
},
"key": "property1",
"points": [1]
}
Resulting in the following payload:
{
"property1": {
"nested_property": "qux",
},
"property2": {
"nested_property": "bar",
}
}
Overwrite payload
Fully replace any existing payload with the given one.
REST API (Schema):
PUT /collections/{collection_name}/points/payload
{
"payload": {
"property1": "string",
"property2": "string"
},
"points": [
0, 3, 100
]
}
client.overwrite_payload(
collection_name="{collection_name}",
payload={
"property1": "string",
"property2": "string",
},
points=[0, 3, 10],
)
client.overwritePayload("{collection_name}", {
payload: {
property1: "string",
property2: "string",
},
points: [0, 3, 10],
});
use qdrant_client::qdrant::{PointsIdsList, SetPayloadPointsBuilder};
use qdrant_client::Payload;
use serde_json::json;
client
.overwrite_payload(
SetPayloadPointsBuilder::new(
"{collection_name}",
Payload::try_from(json!({
"property1": "string",
"property2": "string",
}))
.unwrap(),
)
.points_selector(PointsIdsList {
ids: vec![0.into(), 3.into(), 10.into()],
})
.wait(true),
)
.await?;
import java.util.List;
import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.ValueFactory.value;
client
.overwritePayloadAsync(
"{collection_name}",
Map.of("property1", value("string"), "property2", value("string")),
List.of(id(0), id(3), id(10)),
true,
null,
null)
.get();
using Qdrant.Client;
using Qdrant.Client.Grpc;
var client = new QdrantClient("localhost", 6334);
await client.OverwritePayloadAsync(
collectionName: "{collection_name}",
payload: new Dictionary<string, Value> { { "property1", "string" }, { "property2", "string" } },
ids: new ulong[] { 0, 3, 10 }
);
import (
"context"
"github.com/qdrant/go-client/qdrant"
)
client, err := qdrant.NewClient(&qdrant.Config{
Host: "localhost",
Port: 6334,
})
client.OverwritePayload(context.Background(), &qdrant.SetPayloadPoints{
CollectionName: "{collection_name}",
Payload: qdrant.NewValueMap(
map[string]any{"property1": "string", "property2": "string"}),
PointsSelector: qdrant.NewPointsSelector(
qdrant.NewIDNum(0),
qdrant.NewIDNum(3)),
})
Like set payload, you don’t need to know the ids of the points you want to modify. The alternative is to use filters.
Clear payload
This method removes all payload keys from specified points
REST API (Schema):
POST /collections/{collection_name}/points/payload/clear
{
"points": [0, 3, 100]
}
client.clear_payload(
collection_name="{collection_name}",
points_selector=[0, 3, 100],
)
client.clearPayload("{collection_name}", {
points: [0, 3, 100],
});
use qdrant_client::qdrant::{ClearPayloadPointsBuilder, PointsIdsList};
client
.clear_payload(
ClearPayloadPointsBuilder::new("{collection_name}")
.points(PointsIdsList {
ids: vec![0.into(), 3.into(), 10.into()],
})
.wait(true),
)
.await?;
import java.util.List;
import static io.qdrant.client.PointIdFactory.id;
client
.clearPayloadAsync("{collection_name}", List.of(id(0), id(3), id(100)), true, null, null)
.get();
using Qdrant.Client;
var client = new QdrantClient("localhost", 6334);
await client.ClearPayloadAsync(collectionName: "{collection_name}", ids: new ulong[] { 0, 3, 100 });
import (
"context"
"github.com/qdrant/go-client/qdrant"
)
client, err := qdrant.NewClient(&qdrant.Config{
Host: "localhost",
Port: 6334,
})
client.ClearPayload(context.Background(), &qdrant.ClearPayloadPoints{
CollectionName: "{collection_name}",
Points: qdrant.NewPointsSelector(
qdrant.NewIDNum(0),
qdrant.NewIDNum(3)),
})
Delete payload keys
Delete specific payload keys from points.
REST API (Schema):
POST /collections/{collection_name}/points/payload/delete
{
"keys": ["color", "price"],
"points": [0, 3, 100]
}
client.delete_payload(
collection_name="{collection_name}",
keys=["color", "price"],
points=[0, 3, 100],
)
client.deletePayload("{collection_name}", {
keys: ["color", "price"],
points: [0, 3, 100],
});
use qdrant_client::qdrant::{DeletePayloadPointsBuilder, PointsIdsList};
client
.delete_payload(
DeletePayloadPointsBuilder::new(
"{collection_name}",
vec!["color".to_string(), "price".to_string()],
)
.points_selector(PointsIdsList {
ids: vec![0.into(), 3.into(), 10.into()],
})
.wait(true),
)
.await?;
import java.util.List;
import static io.qdrant.client.PointIdFactory.id;
client
.deletePayloadAsync(
"{collection_name}",
List.of("color", "price"),
List.of(id(0), id(3), id(100)),
true,
null,
null)
.get();
using Qdrant.Client;
var client = new QdrantClient("localhost", 6334);
await client.DeletePayloadAsync(
collectionName: "{collection_name}",
keys: ["color", "price"],
ids: new ulong[] { 0, 3, 100 }
);
import (
"context"
"github.com/qdrant/go-client/qdrant"
)
client, err := qdrant.NewClient(&qdrant.Config{
Host: "localhost",
Port: 6334,
})
client.DeletePayload(context.Background(), &qdrant.DeletePayloadPoints{
CollectionName: "{collection_name}",
Keys: []string{"color", "price"},
PointsSelector: qdrant.NewPointsSelector(
qdrant.NewIDNum(0),
qdrant.NewIDNum(3)),
})
Alternatively, you can use filters to delete payload keys from the points.
POST /collections/{collection_name}/points/payload/delete
{
"keys": ["color", "price"],
"filter": {
"must": [
{
"key": "color",
"match": {
"value": "red"
}
}
]
}
}
client.delete_payload(
collection_name="{collection_name}",
keys=["color", "price"],
points=models.Filter(
must=[
models.FieldCondition(
key="color",
match=models.MatchValue(value="red"),
),
],
),
)
client.deletePayload("{collection_name}", {
keys: ["color", "price"],
filter: {
must: [
{
key: "color",
match: {
value: "red",
},
},
],
},
});
use qdrant_client::qdrant::{Condition, DeletePayloadPointsBuilder, Filter};
client
.delete_payload(
DeletePayloadPointsBuilder::new(
"{collection_name}",
vec!["color".to_string(), "price".to_string()],
)
.points_selector(Filter::must([Condition::matches(
"color",
"red".to_string(),
)]))
.wait(true),
)
.await?;
import java.util.List;
import static io.qdrant.client.ConditionFactory.matchKeyword;
client
.deletePayloadAsync(
"{collection_name}",
List.of("color", "price"),
Filter.newBuilder().addMust(matchKeyword("color", "red")).build(),
true,
null,
null)
.get();
using Qdrant.Client;
using static Qdrant.Client.Grpc.Conditions;
var client = new QdrantClient("localhost", 6334);
await client.DeletePayloadAsync(
collectionName: "{collection_name}",
keys: ["color", "price"],
filter: MatchKeyword("color", "red")
);
import (
"context"
"github.com/qdrant/go-client/qdrant"
)
client, err := qdrant.NewClient(&qdrant.Config{
Host: "localhost",
Port: 6334,
})
client.DeletePayload(context.Background(), &qdrant.DeletePayloadPoints{
CollectionName: "{collection_name}",
Keys: []string{"color", "price"},
PointsSelector: qdrant.NewPointsSelectorFilter(
&qdrant.Filter{
Must: []*qdrant.Condition{qdrant.NewMatch("color", "red")},
},
),
})
Payload indexing
To search more efficiently with filters, Qdrant allows you to create indexes for payload fields by specifying the name and type of field it is intended to be.
The indexed fields also affect the vector index. See Indexing for details.
In practice, we recommend creating an index on those fields that could potentially constrain the results the most. For example, using an index for the object ID will be much more efficient, being unique for each record, than an index by its color, which has only a few possible values.
In compound queries involving multiple fields, Qdrant will attempt to use the most restrictive index first.
To create index for the field, you can use the following:
REST API (Schema)
PUT /collections/{collection_name}/index
{
"field_name": "name_of_the_field_to_index",
"field_schema": "keyword"
}
client.create_payload_index(
collection_name="{collection_name}",
field_name="name_of_the_field_to_index",
field_schema="keyword",
)
client.createPayloadIndex("{collection_name}", {
field_name: "name_of_the_field_to_index",
field_schema: "keyword",
});
use qdrant_client::qdrant::{CreateFieldIndexCollectionBuilder, FieldType};
client
.create_field_index(
CreateFieldIndexCollectionBuilder::new(
"{collection_name}",
"name_of_the_field_to_index",
FieldType::Keyword,
)
.wait(true),
)
.await?;
import io.qdrant.client.grpc.Collections.PayloadSchemaType;
client.createPayloadIndexAsync(
"{collection_name}",
"name_of_the_field_to_index",
PayloadSchemaType.Keyword,
null,
true,
null,
null);
using Qdrant.Client;
var client = new QdrantClient("localhost", 6334);
await client.CreatePayloadIndexAsync(
collectionName: "{collection_name}",
fieldName: "name_of_the_field_to_index"
);
import (
"context"
"github.com/qdrant/go-client/qdrant"
)
client, err := qdrant.NewClient(&qdrant.Config{
Host: "localhost",
Port: 6334,
})
client.CreateFieldIndex(context.Background(), &qdrant.CreateFieldIndexCollection{
CollectionName: "{collection_name}",
FieldName: "name_of_the_field_to_index",
FieldType: qdrant.FieldType_FieldTypeKeyword.Enum(),
})
The index usage flag is displayed in the payload schema with the collection info API.
Payload schema example:
{
"payload_schema": {
"property1": {
"data_type": "keyword"
},
"property2": {
"data_type": "integer"
}
}
}
Facet counts
Available as of v1.12.0
Faceting is a special counting technique that can be used for various purposes:
- Know which unique values exist for a payload key.
- Know the number of points that contain each unique value.
- Know how restrictive a filter would become by matching a specific value.
Specifically, it is a counting aggregation for the values in a field, akin to a GROUP BY
with COUNT(*)
commands in SQL.
These results for a specific field is called a “facet”. For example, when you look at an e-commerce search results page, you might see a list of brands on the sidebar, showing the number of products for each brand. This would be a facet for a "brand"
field.
To get the facet counts for a field, you can use the following:
REST API (Facet)
POST /collections/{collection_name}/facet
{
"key": "size",
"filter": {
"must": {
"key": "color",
"match": { "value": "red" }
}
}
}
from qdrant_client import QdrantClient, models
client = QdrantClient(url="http://localhost:6333")
client.facet(
collection_name="{collection_name}",
key="size",
facet_filter=models.Filter(must=[models.Match("color", "red")]),
)
import { QdrantClient } from "@qdrant/js-client-rest";
const client = new QdrantClient({ host: "localhost", port: 6333 });
client.facet("{collection_name}", {
filter: {
must: [
{
key: "color",
match: {
value: "red",
},
},
],
},
key: "size",
});
use qdrant_client::qdrant::{Condition, FacetCountsBuilder, Filter};
use qdrant_client::Qdrant;
let client = Qdrant::from_url("http://localhost:6334").build()?;
client
.facet(
FacetCountsBuilder::new("{collection_name}", "size")
.limit(10)
.filter(Filter::must(vec![Condition::matches(
"color",
"red".to_string(),
)])),
)
.await?;
import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import static io.qdrant.client.ConditionFactory.matchKeyword;
import io.qdrant.client.grpc.Points;
import io.qdrant.client.grpc.Filter;
QdrantClient client = new QdrantClient(
QdrantGrpcClient.newBuilder("localhost", 6334, false).build());
client
.facetAsync(
Points.FacetCounts.newBuilder()
.setCollectionName(collection_name)
.setKey("size")
.setFilter(Filter.newBuilder().addMust(matchKeyword("color", "red")).build())
.build())
.get();
using Qdrant.Client;
using static Qdrant.Client.Grpc.Conditions;
var client = new QdrantClient("localhost", 6334);
await client.FacetAsync(
"{collection_name}",
key: "size",
filter: MatchKeyword("color", "red")
);
import (
"context"
"github.com/qdrant/go-client/qdrant"
)
client, err := qdrant.NewClient(&qdrant.Config{
Host: "localhost",
Port: 6334,
})
res, err := client.Facet(ctx, &qdrant.FacetCounts{
CollectionName: "{collection_name}",
Key: "size",
Filter: &qdrant.Filter{
Must: []*qdrant.Condition{
qdrant.NewMatch("color", "red"),
},
},
})
The response will contain the counts for each unique value in the field:
{
"response": {
"hits": [
{"value": "L", "count": 19},
{"value": "S", "count": 10},
{"value": "M", "count": 5},
{"value": "XL", "count": 1},
{"value": "XXL", "count": 1}
]
},
"time": 0.0001
}
The results are sorted by the count in descending order, then by the value in ascending order. Only values with non-zero counts will be returned.
By default, the way Qdrant the counts for each value is approximate to achieve fast results. This should accurate enough for most cases, but if you need to debug your storage, you can use the exact
parameter to get exact counts.
POST /collections/{collection_name}/facet
{
"key": "size",
"exact": true
}
client.facet(
collection_name="{collection_name}",
key="size",
exact=True,
)
client.facet("{collection_name}", {
key: "size",
exact: true,
});
use qdrant_client::qdrant::FacetCountsBuilder;
client
.facet(
FacetCountsBuilder::new("{collection_name}", "size")
.limit(10)
.exact(true),
)
.await?;
client
.facetAsync(
Points.FacetCounts.newBuilder()
.setCollectionName(collection_name)
.setKey("foo")
.setExact(true)
.build())
.get();
using Qdrant.Client;
await client.FacetAsync(
"{collection_name}",
key: "size",
exact: true,
);
res, err := client.Facet(ctx, &qdrant.FacetCounts{
CollectionName: "{collection_name}",
Key: "key",
Exact: true,
})