Using Cloud Inference with Qdrant for Vector Search

In this tutorial, we’ll walkthrough building a hybrid semantic search engine using Qdrant Cloud’s built-in inference capabilities. You’ll learn how to:

Initialize the Client

Initialize the Qdrant client after creating a Qdrant Cloud account and a dedicated paid cluster. Set cloud_inference to True to enable cloud inference.

pythontypescriptrustjavacsharpgo
from qdrant_client import QdrantClient

qdrant_client = QdrantClient(
    "xyz-example.cloud-region.cloud-provider.cloud.qdrant.io",
    api_key="<paste-your-api-key-here>",
    cloud_inference=True,
    timeout=30.0
)
import {QdrantClient} from "@qdrant/js-client-rest";

const client = new QdrantClient({
    url: 'https://xyz-example.qdrant.io:6333',
    apiKey: '<paste-your-api-key-here>',
});
use qdrant_client::Qdrant;
use qdrant_client::qdrant::{Document};
use qdrant_client::qdrant::{PointStruct, UpsertPointsBuilder};

let client = Qdrant::from_url("https://xyz-example.qdrant.io:6334")
    .api_key("<paste-your-api-key-here>")
    .build()
    .unwrap();
import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;

QdrantClient client =
      new QdrantClient(
        QdrantGrpcClient.newBuilder("xyz-example.qdrant.io", 6334, true)
        .withApiKey("<paste-your-api-key-here>")
        .build());
using Qdrant.Client;

var client = new QdrantClient(
  host: "xyz-example.cloud-region.cloud-provider.cloud.qdrant.io",
  https: true,
  apiKey: "<paste-your-api-key-here>"
);
import (
    "context"

    "github.com/qdrant/go-client/qdrant"
)

client, err := qdrant.NewClient(&qdrant.Config{
	Host:   "xyz-example.cloud-region.cloud-provider.cloud.qdrant.io",
	Port:   6334,
	APIKey: "<paste-your-api-key-here>",
	UseTLS: true,
})

Create a Collection

Qdrant stores vectors and associated metadata in collections. A collection requires vector parameters to be set during creation. In this case, let’s set up a collection using BM25 for sparse vectors and all-minilm-l6-v2 for dense vectors. BM25 uses the Inverse Document Frequency to reduce the weight of common terms that appear in many documents while boosting the importance of rare terms that are more discriminative for retrieval. Qdrant will handle the calculations of the IDF term if we enable that in the configuration of the bm25_sparse_vector named sparse vector.

pythontypescriptrustjavacsharpgo
from qdrant_client import models

client.create_collection(
    collection_name="{collection_name}",
    vectors_config={
        "dense_vector": models.VectorParams(
            size=384,
            distance=models.Distance.COSINE
        )
    },
    sparse_vectors_config={
        "bm25_sparse_vector": models.SparseVectorParams(
            modifier=models.Modifier.IDF # Enable Inverse Document Frequency
        )
    }
)
client.createCollection("{collection_name}", {
  vectors: {
    dense_vector: { size: 384, distance: "Cosine" },
  },
  sparse_vectors: {
    bm25_sparse_vector: {
      modifier: "idf" // Enable Inverse Document Frequency
    }
  }
});
use qdrant_client::qdrant::{
    CreateCollectionBuilder, Distance, Modifier, SparseVectorParamsBuilder,
    SparseVectorsConfigBuilder, VectorParamsBuilder, VectorsConfigBuilder,
};

let mut vector_config = VectorsConfigBuilder::default();
vector_config.add_named_vector_params(
    "dense_vector",
    VectorParamsBuilder::new(384, Distance::Cosine),
);

let mut sparse_vectors_config = SparseVectorsConfigBuilder::default();
sparse_vectors_config.add_named_vector_params(
    "bm25_sparse_vector",
    SparseVectorParamsBuilder::default().modifier(Modifier::Idf), // Enable Inverse Document Frequency
);

client
    .create_collection(
        CreateCollectionBuilder::new("{collection_name}")
            .vectors_config(vector_config)
            .sparse_vectors_config(sparse_vectors_config),
    )
    .await?;
import io.qdrant.client.grpc.Collections.CreateCollection;
import io.qdrant.client.grpc.Collections.Distance;
import io.qdrant.client.grpc.Collections.Modifier;
import io.qdrant.client.grpc.Collections.SparseVectorConfig;
import io.qdrant.client.grpc.Collections.SparseVectorParams;
import io.qdrant.client.grpc.Collections.VectorParams;
import io.qdrant.client.grpc.Collections.VectorParamsMap;
import io.qdrant.client.grpc.Collections.VectorsConfig;

client
    .createCollectionAsync(
        CreateCollection.newBuilder()
            .setCollectionName("{collection_name}")
            .setVectorsConfig(
                VectorsConfig.newBuilder()
                    .setParamsMap(
                        VectorParamsMap.newBuilder()
                            .putAllMap(
                                Map.of(
                                    "dense_vector",
                                    VectorParams.newBuilder()
                                        .setSize(384)
                                        .setDistance(Distance.Cosine)
                                        .build())))
                    .setSparseVectorsConfig(
                        SparseVectorConfig.newBuilder()
                            .putMap(
                                "bm25_sparse_vector",
                                SparseVectorParams.newBuilder()
                                    .setModifier(Modifier.Idf)
                                    .build())))
            .build())
    .get();
await client.CreateCollectionAsync(
  collectionName: "{collection_name}",
  vectorsConfig: new VectorParamsMap
  {
      Map = {
      ["dense_vector"] = new VectorParams {
        Size = 384, Distance = Distance.Cosine
      },
    }
  },
  sparseVectorsConfig: new SparseVectorConfig
  {
      Map = {
        ["bm25_sparse_vector"] = new() {
    	  Modifier = Modifier.Idf,  // Enable Inverse Document Frequency
  		}
    }
  }
);
client.CreateCollection(context.Background(), &qdrant.CreateCollection{
	CollectionName: "{collection_name}",
	VectorsConfig: qdrant.NewVectorsConfigMap(
		map[string]*qdrant.VectorParams{
			"dense_vector": {
				Size:     384,
				Distance: qdrant.Distance_Cosine,
			},
		}),
	SparseVectorsConfig: qdrant.NewSparseVectorsConfig(
		map[string]*qdrant.SparseVectorParams{
			"bm25_sparse_vector": {
				Modifier: qdrant.Modifier_Idf.Enum(),
			},
		},
	),
})

Add Data

Now you can add sample documents, their associated metadata, and a point id for each. Here’s a sample of the miriad/miriad-4.4M dataset:

qa_idpaper_idquestionyearvenuespecialtypassage_text
38_77498699_0_177498699What are the clinical features of relapsing polychondritis?2006Internet Journal of OtorhinolaryngologyRheumatologyA 45-year-old man presented with painful swelling…
38_77498699_0_277498699What treatments are available for relapsing polychondritis?2006Internet Journal of OtorhinolaryngologyRheumatologyPatient showed improvement after treatment with…
38_88124321_0_388124321How is Takayasu arteritis diagnosed?2015Journal of Autoimmune DiseasesRheumatologyA 32-year-old woman with fatigue and limb pain…

We won’t ingest all the entries from the dataset, but for demo purposes, just take the first hundred ones:

pythontypescriptrustjavacsharpgo
from qdrant_client.http.models import PointStruct, Document
from datasets import load_dataset
import uuid

dense_model = "sentence-transformers/all-minilm-l6-v2"

bm25_model = "qdrant/bm25"

ds = load_dataset("miriad/miriad-4.4M", split="train[0:100]")

points = []

for idx, item in enumerate(ds):
    passage = item["passage_text"]
    
    point = PointStruct(
        id=uuid.uuid4().hex,  # use unique string ID
        payload=item,
        vector={
            "dense_vector": Document(
                text=passage,
                model=dense_model
            ),
            "bm25_sparse_vector": Document(
                text=passage,
                model=bm25_model
            )
        }
    )
    points.append(point)

client.upload_points(
    collection_name="{collection_name}", 
    points=points, 
    batch_size=8
)
import { randomUUID } from "crypto";

const denseModel = "sentence-transformers/all-minilm-l6-v2";
const bm25Model = "qdrant/bm25";
// NOTE: loadDataset is a user-defined function.
// Implement it to handle dataset loading as needed.
const dataset = loadDataset("miriad/miriad-4.4M", "train[0:100]");

const points = dataset.map((item) => {
  const passage = item.passage_text;

  return {
    id: randomUUID().toString(),
    vector: {
      dense_vector: {
        text: passage,
        model: denseModel,
      },
      bm25_sparse_vector: {
        text: passage,
        model: bm25Model,
      },
    },
  };
});

await client.upsert("{collection_name}", { points });
use qdrant_client::qdrant::{
    Document, NamedVectors, PointStruct, UpsertPointsBuilder,
};
use qdrant_client::Payload;

let dense_model = "sentence-transformers/all-minilm-l6-v2";
let bm25_model = "qdrant/bm25";
// NOTE: load_dataset is a user-defined function.
// Implement it to handle dataset loading as needed.
let dataset: Vec<_> = load_dataset("miriad/miriad-4.4M", "train[0:100]");

let points: Vec<PointStruct> = dataset
    .iter()
    .map(|item| {
        let passage = item["passage_text"].as_str().unwrap();
        let vectors = NamedVectors::default()
            .add_vector(
                "dense_vector",
                Document::new(passage, dense_model),
            )
            .add_vector(
                "bm25_sparse_vector",
                Document::new(passage, bm25_model),
            );
        let payload = Payload::try_from(item.clone()).unwrap();
        PointStruct::new(Uuid::new_v4().to_string(), vectors, payload)
    })
    .collect();

client
    .upsert_points(UpsertPointsBuilder::new(collection_name, points))
    .await?;
import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.VectorsFactory.namedVectors;
import static io.qdrant.client.VectorsFactory.vectors;

import io.qdrant.client.grpc.Points.Document;
import io.qdrant.client.grpc.Points.PointStruct;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.UUID;

String denseModel = "sentence-transformers/all-minilm-l6-v2";
String bm25Model = "qdrant/bm25";
// NOTE: loadDataset is a user-defined function.
// Implement it to handle dataset loading as needed.
List<Map<String, String>> dataset = loadDataset("miriad/miriad-4.4M", "train[0:100]");
List<PointStruct> points = new ArrayList<>();

for (Map<String, String> item : dataset) {
  String passage = item.get("passage_text");
  PointStruct point =
      PointStruct.newBuilder()
          .setId(id(UUID.randomUUID()))
          .setVectors(
              namedVectors(
                  Map.of(
                      "dense_vector",
                      vectors(
                          Document.newBuilder().setText(passage).setModel(denseModel).build()),
                      "bm25_sparse_vector",
                      vectors(
                          Document.newBuilder().setText(passage).setModel(bm25Model).build()))))
          .build();
  points.add(point);
}

client.upsertAsync("{collection_name}", points).get();
var denseModel = "sentence-transformers/all-minilm-l6-v2";
var bm25Model = "qdrant/bm25";
// NOTE: LoadDataset is a user-defined function.
// Implement it to handle dataset loading as needed.
var dataset = LoadDataset("miriad/miriad-4.4M", "train[0:100]");
var points = new List<PointStruct>();

foreach (var item in dataset)
{
    var passage = item["passage_text"].ToString();

    var point = new PointStruct
    {
        Id = Guid.NewGuid(),
        Vectors = new Dictionary<string, Vector>
        {
            ["dense_vector"] = new Document
            {
                Text = passage,
                Model = denseModel
            },
            ["bm25_sparse_vector"] = new Document
            {
                Text = passage,
                Model = bm25Model
            }
        },
    };

    points.Add(point);
}

await client.UpsertAsync(
    collectionName: "{collectionName}",
    points: points
);
denseModel := "sentence-transformers/all-minilm-l6-v2"
bm25Model := "qdrant/bm25"
// NOTE: loadDataset is a user-defined function.
// Implement it to handle dataset loading as needed.
dataset := loadDataset("miriad/miriad-4.4M", "train[0:100]")
points := make([]*qdrant.PointStruct, 0, 100)

for _, item := range dataset {
	passage := item["passage_text"]
	point := &qdrant.PointStruct{
		Id: qdrant.NewID(uuid.New().String()),
		Vectors: qdrant.NewVectorsMap(map[string]*qdrant.Vector{
			"dense_vector": qdrant.NewVectorDocument(&qdrant.Document{
				Text:  passage,
				Model: denseModel,
			}),
			"bm25_sparse_vector": qdrant.NewVectorDocument(&qdrant.Document{
				Text:  passage,
				Model: bm25Model,
			}),
		}),
	}
	points = append(points, point)
}
_, err = client.Upsert(ctx, &qdrant.UpsertPoints{
	CollectionName: "{collection_name},
	Points:         points,
})

Set Up Input Query

Create a sample query:

pythontypescriptrustjavacsharpgo
query_text = "What is relapsing polychondritis?"
let query_text = "What is relapsing polychondritis?";
let query_text = "What is relapsing polychondritis?";
String queryText = "What is relapsing polychondritis?";
var queryText = "What is relapsing polychondritis?"
queryText := "What is relapsing polychondritis?"

Here, you will ask a question that will allow you to retrieve semantically relevant results. The final results are obtained by reranking using Reciprocal Rank Fusion.

pythontypescriptrustjavacsharpgo
results = client.query_points(
    collection_name="{collection_name}",
    prefetch=[
        models.Prefetch(
            query=Document(
                text=query_text,
                model=dense_model
            ),
            using="dense_vector",
            limit=5
        ),
        models.Prefetch(
            query=Document(
                text=query_text,
                model=bm25_model
            ),
            using="bm25_sparse_vector",
            limit=5
        )
    ],
    query=models.FusionQuery(fusion=models.Fusion.RRF),
    limit=5,
    with_payload=True
)

print(results.points)
const results = await client.query(collectionName, {
    prefetch: [
        {
            query: {
                text: queryText,
                model: denseModel,
            },
            using: "dense_vector",
        },
        {
            query: {
                text: queryText,
                model: bm25Model,
            },
            using: "bm25_sparse_vector",
        },
    ],
    query: {
        fusion: "rrf",
    },
});
use qdrant_client::qdrant::{Document, Fusion, PrefetchQueryBuilder, Query, QueryPointsBuilder};

let dense_prefetch = PrefetchQueryBuilder::default()
    .query(Query::new_nearest(Document::new(query_text, dense_model)))
    .using("dense_vector")
    .build();

let bm25_prefetch = PrefetchQueryBuilder::default()
    .query(Query::new_nearest(Document::new(query_text, bm25_model)))
    .using("bm25_sparse_vector")
    .build();

let query_request = QueryPointsBuilder::new(collection_name)
    .add_prefetch(dense_prefetch)
    .add_prefetch(bm25_prefetch)
    .query(Query::new_fusion(Fusion::Rrf))
    .with_payload(true)
    .build();

let results = client.query(query_request).await?;
import static io.qdrant.client.QueryFactory.fusion;
import static io.qdrant.client.QueryFactory.nearest;

import io.qdrant.client.grpc.Points.Document;
import io.qdrant.client.grpc.Points.Fusion;
import io.qdrant.client.grpc.Points.PrefetchQuery;
import io.qdrant.client.grpc.Points.QueryPoints;

PrefetchQuery densePrefetch =
    PrefetchQuery.newBuilder()
        .setQuery(
            nearest(Document.newBuilder().setText(queryText).setModel(denseModel).build()))
        .setUsing("dense_vector")
        .build();

PrefetchQuery bm25Prefetch =
    PrefetchQuery.newBuilder()
        .setQuery(nearest(Document.newBuilder().setText(queryText).setModel(bm25Model).build()))
        .setUsing("bm25_sparse_vector")
        .build();

QueryPoints request =
    QueryPoints.newBuilder()
        .setCollectionName("{collection_name}")
        .addPrefetch(densePrefetch)
        .addPrefetch(bm25Prefetch)
        .setQuery(fusion(Fusion.RRF))
        .build();

client.queryAsync(request).get();
await client.QueryAsync(
collectionName: "{collection_name}", prefetch: new List <PrefetchQuery> {
  new() {
    Query = new Document {
      Text = queryText,
      Model = bm25Model
    },
    Using = "bm25_sparse_vector",
    Limit = 5
  },
  new() {
    Query = new Document {
      Text = queryText,
      Model = denseModel
    },
    Using = "dense_vector",
    Limit = 5
  }
},
query: Fusion.Rrf,
limit: 5
);
prefetch := []*qdrant.PrefetchQuery{
	{
		Query: qdrant.NewQueryDocument(&qdrant.Document{
			Text:  queryText,
			Model: bm25Model,
		}),
		Using: qdrant.PtrOf("bm25_sparse_vector"),
	},
	{
		Query: qdrant.NewQueryDocument(&qdrant.Document{
			Text:  queryText,
			Model: denseModel,
		}),
		Using: qdrant.PtrOf("dense_vector"),
	},
}

client.Query(ctx, &qdrant.QueryPoints{
	CollectionName: "{collection_name}",
	Prefetch:       prefetch,
	Query:          qdrant.NewQueryFusion(qdrant.Fusion_RRF),
})

The semantic search engine will retrieve the most similar result in order of relevance.

[ScoredPoint(id='9968a760-fbb5-4d91-8549-ffbaeb3ebdba', 
version=0, score=14.545895, 
payload={'text': "Relapsing Polychondritis is a rare..."}, 
vector=None, shard_key=None, order_value=None)]
Was this page useful?

Thank you for your feedback! 🙏

We are sorry to hear that. 😔 You can edit this page on GitHub, or create a GitHub issue.