Prem AI
PremAI is a unified generative AI development platform for fine-tuning deploying, and monitoring AI models.
Qdrant is compatible with PremAI APIs.
Installing the SDKs
pip install premai qdrant-client
To install the npm package:
npm install @premai/prem-sdk @qdrant/js-client-rest
Import all required packages
from premai import Prem
from qdrant_client import QdrantClient
from qdrant_client.models import Distance, VectorParams
import Prem from '@premai/prem-sdk';
import { QdrantClient } from '@qdrant/js-client-rest';
Define all the constants
We need to define the project ID and the embedding model to use. You can learn more about obtaining these in the PremAI docs.
PROJECT_ID = 123
EMBEDDING_MODEL = "text-embedding-3-large"
COLLECTION_NAME = "prem-collection-py"
QDRANT_SERVER_URL = "http://localhost:6333"
DOCUMENTS = [
"This is a sample python document",
"We will be using qdrant and premai python sdk"
]
const PROJECT_ID = 123;
const EMBEDDING_MODEL = "text-embedding-3-large";
const COLLECTION_NAME = "prem-collection-js";
const SERVER_URL = "http://localhost:6333"
const DOCUMENTS = [
"This is a sample javascript document",
"We will be using qdrant and premai javascript sdk"
];
Set up PremAI and Qdrant clients
prem_client = Prem(api_key="xxxx-xxx-xxx")
qdrant_client = QdrantClient(url=QDRANT_SERVER_URL)
const premaiClient = new Prem({
apiKey: "xxxx-xxx-xxx"
})
const qdrantClient = new QdrantClient({ url: SERVER_URL });
Generating Embeddings
from typing import Union, List
def get_embeddings(
project_id: int,
embedding_model: str,
documents: Union[str, List[str]]
) -> List[List[float]]:
"""
Helper function to get the embeddings from premai sdk
Args
project_id (int): The project id from prem saas platform.
embedding_model (str): The embedding model alias to choose
documents (Union[str, List[str]]): Single texts or list of texts to embed
Returns:
List[List[int]]: A list of list of integers that represents different
embeddings
"""
embeddings = []
documents = [documents] if isinstance(documents, str) else documents
for embedding in prem_client.embeddings.create(
project_id=project_id,
model=embedding_model,
input=documents
).data:
embeddings.append(embedding.embedding)
return embeddings
async function getEmbeddings(projectID, embeddingModel, documents) {
const response = await premaiClient.embeddings.create({
project_id: projectID,
model: embeddingModel,
input: documents
});
return response;
}
Converting Embeddings to Qdrant Points
from qdrant_client.models import PointStruct
embeddings = get_embeddings(
project_id=PROJECT_ID,
embedding_model=EMBEDDING_MODEL,
documents=DOCUMENTS
)
points = [
PointStruct(
id=idx,
vector=embedding,
payload={"text": text},
) for idx, (embedding, text) in enumerate(zip(embeddings, DOCUMENTS))
]
function convertToQdrantPoints(embeddings, texts) {
return embeddings.data.map((data, i) => {
return {
id: i,
vector: data.embedding,
payload: {
text: texts[i]
}
};
});
}
const embeddings = await getEmbeddings(PROJECT_ID, EMBEDDING_MODEL, DOCUMENTS);
const points = convertToQdrantPoints(embeddings, DOCUMENTS);
Set up a Qdrant Collection
qdrant_client.create_collection(
collection_name=COLLECTION_NAME,
vectors_config=VectorParams(size=3072, distance=Distance.DOT)
)
await qdrantClient.createCollection(COLLECTION_NAME, {
vectors: {
size: 3072,
distance: 'Cosine'
}
})
Insert Documents into the Collection
doc_ids = list(range(len(embeddings)))
qdrant_client.upsert(
collection_name=COLLECTION_NAME,
points=points
)
await qdrantClient.upsert(COLLECTION_NAME, {
wait: true,
points
});
Perform a Search
query = "what is the extension of python document"
query_embedding = get_embeddings(
project_id=PROJECT_ID,
embedding_model=EMBEDDING_MODEL,
documents=query
)
qdrant_client.search(collection_name=COLLECTION_NAME, query_vector=query_embedding[0])
const query = "what is the extension of javascript document"
const query_embedding_response = await getEmbeddings(PROJECT_ID, EMBEDDING_MODEL, query)
await qdrantClient.search(COLLECTION_NAME, {
vector: query_embedding_response.data[0].embedding
});