Camel
Camel is a Python framework to build and use LLM-based agents for real-world task solving.
Qdrant is available as a storage mechanism in Camel for ingesting and retrieving semantically similar data.
Usage With Qdrant
- Install Camel with the
vector-databases
extra.
pip install "camel[vector-databases]"
- Configure the
QdrantStorage
class.
from camel.storages import QdrantStorage, VectorDBQuery, VectorRecord
from camel.types import VectorDistance
qdrant_storage = QdrantStorage(
url_and_api_key=(
"https://xyz-example.eu-central.aws.cloud.qdrant.io:6333",
"<provide-your-own-key>",
),
collection_name="{collection_name}",
distance=VectorDistance.COSINE,
vector_dim=384,
)
The QdrantStorage
class implements methods to read and write to a Qdrant instance. An instance of this class can now be passed to retrievers for interfacing with your Qdrant collections.
qdrant_storage.add([VectorRecord(
vector=[-0.1, 0.1, ...],
payload={'key1': 'value1'},
),
VectorRecord(
vector=[-0.1, 0.1, ...],
payload={'key2': 'value2'},
),])
query_results = qdrant_storage.query(VectorDBQuery(query_vector=[0.1, 0.2, ...], top_k=10))
for result in query_results:
print(result.record.payload, result.similarity)
qdrant_storage.clear()
- Use the
QdrantStorage
in Camel’s Vector Retriever.
from camel.embeddings import OpenAIEmbedding
from camel.retrievers import VectorRetriever
# Initialize the VectorRetriever with an embedding model
vr = VectorRetriever(embedding_model=OpenAIEmbedding())
content_input_path = "<URL-TO-SOME-RESOURCE>"
vr.process(content_input_path, qdrant_storage)
# Execute the query and retrieve results
results = vr.query("<SOME_USER_QUERY>", vector_storage)
- Camel also provides an Auto Retriever implementation that handles both embedding and storing data and executing queries.
from camel.retrievers import AutoRetriever
from camel.types import StorageType
ar = AutoRetriever(
url_and_api_key=(
"https://xyz-example.eu-central.aws.cloud.qdrant.io:6333",
"<provide-your-own-key>",
),
storage_type=StorageType.QDRANT,
)
retrieved_info = ar.run_vector_retriever(
contents=["<URL-TO-SOME-RESOURCE>"],
query=""<SOME_USER_QUERY>"",
return_detailed_info=True,
)
print(retrieved_info)
You can refer to the Camel documentation for more information about the retrieval mechansims.