Apache Spark

Spark is a distributed computing framework designed for big data processing and analytics. The Qdrant-Spark connector enables Qdrant to be a storage destination in Spark.

Installation

You can set up the Qdrant-Spark Connector in a few different ways, depending on your preferences and requirements.

GitHub Releases

You can download the packaged JAR file from the GitHub releases. It comes with all the required dependencies.

Building from Source

To build the JAR from source, you’ll need JDK 8 and Maven installed on your system. Once you have those in place, navigate to the project’s root directory and run the following command:

mvn package -DskipTests

This will compile the source code and generate a fat JAR, which will be stored in the target directory by default.

Maven Central

The package can be found here.

Usage

Below, we’ll walk through the steps of creating a Spark session and ingesting data into Qdrant.

To begin, import the necessary libraries and create a Spark session with Qdrant support:

pythonscalajava
from pyspark.sql import SparkSession

spark = SparkSession.builder.config(
        "spark.jars",
        "spark-VERSION.jar",  # Specify the path to the downloaded JAR file
    )
    .master("local[*]")
    .appName("qdrant")
    .getOrCreate()
import org.apache.spark.sql.SparkSession

val spark = SparkSession.builder
  .config("spark.jars", "spark-VERSION.jar") // Specify the path to the downloaded JAR file
  .master("local[*]")
  .appName("qdrant")
  .getOrCreate()
import org.apache.spark.sql.SparkSession;

public class QdrantSparkJavaExample {
    public static void main(String[] args) {
        SparkSession spark = SparkSession.builder()
                .config("spark.jars", "spark-VERSION.jar") // Specify the path to the downloaded JAR file
                .master("local[*]")
                .appName("qdrant")
                .getOrCreate(); 
    }
}

The connector supports ingesting multiple named/unnamed, dense/sparse vectors.

Click each to expand.

Unnamed/Default vector
  <pyspark.sql.DataFrame>
   .write
   .format("io.qdrant.spark.Qdrant")
   .option("qdrant_url", <QDRANT_GRPC_URL>)
   .option("collection_name", <QDRANT_COLLECTION_NAME>)
   .option("embedding_field", <EMBEDDING_FIELD_NAME>)  # Expected to be a field of type ArrayType(FloatType)
   .option("schema", <pyspark.sql.DataFrame>.schema.json())
   .mode("append")
   .save()
Named vector
  <pyspark.sql.DataFrame>
   .write
   .format("io.qdrant.spark.Qdrant")
   .option("qdrant_url", <QDRANT_GRPC_URL>)
   .option("collection_name", <QDRANT_COLLECTION_NAME>)
   .option("embedding_field", <EMBEDDING_FIELD_NAME>)  # Expected to be a field of type ArrayType(FloatType)
   .option("vector_name", <VECTOR_NAME>)
   .option("schema", <pyspark.sql.DataFrame>.schema.json())
   .mode("append")
   .save()

NOTE

The embedding_field and vector_name options are maintained for backward compatibility. It is recommended to use vector_fields and vector_names for named vectors as shown below.

Multiple named vectors
  <pyspark.sql.DataFrame>
   .write
   .format("io.qdrant.spark.Qdrant")
   .option("qdrant_url", "<QDRANT_GRPC_URL>")
   .option("collection_name", "<QDRANT_COLLECTION_NAME>")
   .option("vector_fields", "<COLUMN_NAME>,<ANOTHER_COLUMN_NAME>")
   .option("vector_names", "<VECTOR_NAME>,<ANOTHER_VECTOR_NAME>")
   .option("schema", <pyspark.sql.DataFrame>.schema.json())
   .mode("append")
   .save()
Sparse vectors
  <pyspark.sql.DataFrame>
   .write
   .format("io.qdrant.spark.Qdrant")
   .option("qdrant_url", "<QDRANT_GRPC_URL>")
   .option("collection_name", "<QDRANT_COLLECTION_NAME>")
   .option("sparse_vector_value_fields", "<COLUMN_NAME>")
   .option("sparse_vector_index_fields", "<COLUMN_NAME>")
   .option("sparse_vector_names", "<SPARSE_VECTOR_NAME>")
   .option("schema", <pyspark.sql.DataFrame>.schema.json())
   .mode("append")
   .save()
Multiple sparse vectors
  <pyspark.sql.DataFrame>
   .write
   .format("io.qdrant.spark.Qdrant")
   .option("qdrant_url", "<QDRANT_GRPC_URL>")
   .option("collection_name", "<QDRANT_COLLECTION_NAME>")
   .option("sparse_vector_value_fields", "<COLUMN_NAME>,<ANOTHER_COLUMN_NAME>")
   .option("sparse_vector_index_fields", "<COLUMN_NAME>,<ANOTHER_COLUMN_NAME>")
   .option("sparse_vector_names", "<SPARSE_VECTOR_NAME>,<ANOTHER_SPARSE_VECTOR_NAME>")
   .option("schema", <pyspark.sql.DataFrame>.schema.json())
   .mode("append")
   .save()
Combination of named dense and sparse vectors
  <pyspark.sql.DataFrame>
   .write
   .format("io.qdrant.spark.Qdrant")
   .option("qdrant_url", "<QDRANT_GRPC_URL>")
   .option("collection_name", "<QDRANT_COLLECTION_NAME>")
   .option("vector_fields", "<COLUMN_NAME>,<ANOTHER_COLUMN_NAME>")
   .option("vector_names", "<VECTOR_NAME>,<ANOTHER_VECTOR_NAME>")
   .option("sparse_vector_value_fields", "<COLUMN_NAME>,<ANOTHER_COLUMN_NAME>")
   .option("sparse_vector_index_fields", "<COLUMN_NAME>,<ANOTHER_COLUMN_NAME>")
   .option("sparse_vector_names", "<SPARSE_VECTOR_NAME>,<ANOTHER_SPARSE_VECTOR_NAME>")
   .option("schema", <pyspark.sql.DataFrame>.schema.json())
   .mode("append")
   .save()
No vectors - Entire dataframe is stored as payload
  <pyspark.sql.DataFrame>
   .write
   .format("io.qdrant.spark.Qdrant")
   .option("qdrant_url", "<QDRANT_GRPC_URL>")
   .option("collection_name", "<QDRANT_COLLECTION_NAME>")
   .option("schema", <pyspark.sql.DataFrame>.schema.json())
   .mode("append")
   .save()

Databricks

You can use the qdrant-spark connector as a library in Databricks.

  • Go to the Libraries section in your Databricks cluster dashboard.
  • Select Install New to open the library installation modal.
  • Search for io.qdrant:spark:VERSION in the Maven packages and click Install.

Databricks

Datatype Support

Qdrant supports most Spark data types, and the appropriate data types are mapped based on the provided schema.

Configuration Options

OptionDescriptionColumn DataTypeRequired
qdrant_urlGRPC URL of the Qdrant instance. Eg: http://localhost:6334-
collection_nameName of the collection to write data into-
schemaJSON string of the dataframe schema-
embedding_fieldName of the column holding the embeddingsArrayType(FloatType)
id_fieldName of the column holding the point IDs. Default: Random UUIDStringType or IntegerType
batch_sizeMax size of the upload batch. Default: 64-
retriesNumber of upload retries. Default: 3-
api_keyQdrant API key for authentication-
vector_nameName of the vector in the collection.-
vector_fieldsComma-separated names of columns holding the vectors.ArrayType(FloatType)
vector_namesComma-separated names of vectors in the collection.-
sparse_vector_index_fieldsComma-separated names of columns holding the sparse vector indices.ArrayType(IntegerType)
sparse_vector_value_fieldsComma-separated names of columns holding the sparse vector values.ArrayType(FloatType)
sparse_vector_namesComma-separated names of the sparse vectors in the collection.-
shard_key_selectorComma-separated names of custom shard keys to use during upsert.-

For more information, be sure to check out the Qdrant-Spark GitHub repository. The Apache Spark guide is available here. Happy data processing!

Was this page useful?

Thank you for your feedback! 🙏

We are sorry to hear that. 😔 You can edit this page on GitHub, or create a GitHub issue.

We use cookies to learn more about you. At any time you can delete or block cookies through your browser settings.

Learn moreI accept