Langchain Go

Langchain Go is a framework for developing data-aware applications powered by language models in Go.

You can use Qdrant as a vector store in Langchain Go.

Setup

Install the langchain-go project dependency

go get -u github.com/tmc/langchaingo

Usage

Before you use the following code sample, customize the following values for your configuration:

  • YOUR_QDRANT_REST_URL: If you’ve set up Qdrant using the Quick Start guide, set this value to http://localhost:6333.
  • YOUR_COLLECTION_NAME: Use our Collections guide to create or list collections.
package main

import (
    "log"
    "net/url"

    "github.com/tmc/langchaingo/embeddings"
    "github.com/tmc/langchaingo/llms/openai"
    "github.com/tmc/langchaingo/vectorstores/qdrant"
)

func main() {
    llm, err: = openai.New()
    if err != nil {
        log.Fatal(err)
    }

    e, err: = embeddings.NewEmbedder(llm)
    if err != nil {
        log.Fatal(err)
    }

    url, err: = url.Parse("YOUR_QDRANT_REST_URL")
    if err != nil {
        log.Fatal(err)
    }

    store, err: = qdrant.New(
        qdrant.WithURL(*url),
        qdrant.WithCollectionName("YOUR_COLLECTION_NAME"),
        qdrant.WithEmbedder(e),
    )
    if err != nil {
        log.Fatal(err)
    }
}

Further Reading

Was this page useful?

Thank you for your feedback! 🙏

We are sorry to hear that. 😔 You can edit this page on GitHub, or create a GitHub issue.