Spring AI
Spring AI is a Java framework that provides a Spring-friendly API and abstractions for developing AI applications.
Qdrant is available as supported vector database for use within your Spring AI projects.
Installation
You can find the Spring AI installation instructions here.
Add the Qdrant boot starter package.
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-qdrant-store-spring-boot-starter</artifactId>
</dependency>
Usage
Configure Qdrant with Spring Boot’s application.properties
.
spring.ai.vectorstore.qdrant.host=<host of your qdrant instance>
spring.ai.vectorstore.qdrant.port=<the GRPC port of your qdrant instance>
spring.ai.vectorstore.qdrant.api-key=<your api key>
spring.ai.vectorstore.qdrant.collection-name=<The name of the collection to use in Qdrant>
Learn more about these options in the configuration reference.
Or you can set up the Qdrant vector store with the QdrantVectorStoreConfig
options.
@Bean
public QdrantVectorStoreConfig qdrantVectorStoreConfig() {
return QdrantVectorStoreConfig.builder()
.withHost("<QDRANT_HOSTNAME>")
.withPort(<QDRANT_GRPC_PORT>)
.withCollectionName("<QDRANT_COLLECTION_NAME>")
.withApiKey("<QDRANT_API_KEY>")
.build();
}
Build the vector store using the config and any of the support Spring AI embedding providers.
@Bean
public VectorStore vectorStore(QdrantVectorStoreConfig config, EmbeddingClient embeddingClient) {
return new QdrantVectorStore(config, embeddingClient);
}
You can now use the VectorStore
instance backed by Qdrant as a vector store in the Spring AI APIs.
📚 Further Reading
- Spring AI Qdrant reference
- Spring AI API reference
- Source Code